Constellation X-ray Mission

TRIP Highlights

Jean Grady Constellation-X Deputy Project Manager Goddard Space Flight Center

Technology Readiness and Implementation Plan (TRIP) Overview

Schedule of Events

- Received Call for Reports from HQ early October 2002
- Report provided to HQ on February 3, 2003
- Received follow-up questions on Feb. 21 and March 5, 2003
- Held site visit at GSFC on March 20, 2003
- TRIP Review Report issued April 22, 2003

Report Content

- Science and Instrumentation description
- Mission Implementation
- Technology Development Plans
- Management and Costs
- TRIP Report available on the Constellation-X Project Library Web site
 - http://conxproject.gsfc.nasa.gov/engn.htm

Many thanks to all who contributed to the Constellation-X TRIP Report and to the TRIP site visit!

Reference Mission Configuration

- Overall Reference Mission definition remains unchanged
 - 4 identical observatories, 2 observatories per launch, L2 orbit, etc.
- Refined modular concept for Reference Mission Configuration
 - Telescope Module, consisting of
 - Optics Module (OM)
 - Optical Bench (OB)
 - Focal Plane Module (FPM)
 - Spacecraft Bus
- Refined instrument and spacecraft block diagrams and conceptual designs
- Updated power and mass budgets
- Developed I&T flow, which takes advantage of modular design to minimize schedule and risk
- Refined Missions Operations Concept

Exploded View of Constellation-X Observatory

Constellation-X Observatory — Optics Module

SXT Optical Path

Constellation-X Observatory — Focal Plane Module

Telescope Module (TM) — Organization

X-ray Microcalorimeter Spectrometer (XMS) Block Diagram and Conceptual Implementation

Mass ~ 150 kg, including electronics

Constellation-X Observatory — Spacecraft

Constellation-X Launch Configuration and Orbit

Constellation-X Launch Configuration

Trajectory with Phasing Loops and Lunar Swingby

Mass and Power Resources

LV Performance = 6498 Kg

% Contingency & Margin = 34%

Mass

Solar Array EOL = 1442 W

% Contingency & Margin = 34%

Power

Sufficient resources are available for the mission

I&T Flow

Constellation-X Mission Operations

Requirements and Error Budgets

- Mission Top Level Requirements remain stable
 - Incorporated Spectral Resolving Power of 1500 from 6 to 10 keV
- Updated Mission and Instrument error budgets
- Documented flow down of requirements to each instrument and instrument elements

Key Top Level Requirements

Parameter	Baseline Requirement
Bandpass	0.25 to 40 keV
Effective Area	
0.25 to 10 keV	1,000 cm ²
1.25 keV	15,000 cm ²
6.0 keV	6,000 cm ²
10 to 40 keV	1,500 cm ²
Spectral Resolving Power (E/DE)	
0.25 to 6.0 keV	300
6 to 10 keV	1,500
10 to 40 keV	10
Angular Resolution (HPD)	
<10 keV	15 arcsec
>10 keV	1 arcmin
Fields of View	
<10 keV	2.5 arcmin
>10 keV	8 arcmin
Bright Source Limit	40,000 cps
Absolute Timing (relative to UTC)	100 microsec
Mission Lifetime	4 years at full capacity

SXT Effective Area Budget

SXT Effective Area Budget									
	Area At Energy								
	0.25 keV	1.25 keV	6keV	Comment					
SXT FMA Geometric Area	59,400	59,400	59,400	230 shell design					
Reflectivity loss	-17,118	-18,641	-50,324	Gold coating					
SXT FMA Effective Area	42,282	40,759	9,076	9076 was 8709 in TRIP (error)					
SXT Effective Area Losses									
Structural blockage	-5,919	-5,747	-1,534	Baseline housing design					
P-H Shell Alignment	-423	-611	-182	1% loss					
Aperture Alignment	-211	-306	-91	1/2% to 1% loss (energy dependent)					
SXT Contamination - EOL	-423	-408	-91	1% (Chandra experience)					
SXT Effective Area	35,306	33,687	7,179						
(per SXT)	8,826	8,422	1,795						
XMS Area Feed	19,627	18,826	6,109						
RGS Area Feed	15,678	14,861	1,070						
Instrument/Telescope losses									
RGS Internal Vignetting	-784	-743	-54						
XMS(Cal QE, Filter, fill factor)	-19,627	-3,212	-410						
RGS(Grat Effy, CCD QE, Filter)	-12,659	-13,280	0						
Grating internal alignment	-157	-149	-11	1%					
Off-axis operation	-14	-172	-68	Raytrace					
Inst Contamination - EOL	-784	-941	-14	0.2% to 5% energy dependent					
Total Area - Predicted	1,281	15,191	6,622						
Total Area - Requirement	1,000	15,000	6,000						
Margin(%)	28.1	1.3	10.4						

Mission Effective Area

Mission Spectral Resolving Power

SXT Angular Resolution Error Budget

Requirement

Legend:

Margin

Item (HPD – arcsec)	Rqmt	Margin		Allocation/Predictions				Rationale
RGS Resolution	15.00	4.01	14.46					4 satellites, post-processed
Co-add 4 satellites				1.00				Superposition of data using X-ray centroids
On-Orbit Telescope - single satellite				14.42				RSS
CCD pixelization error					0.41			0.5 arcsec pixels
Grating resolution errors					5.00			Estimate
XMS Resolution	15.00	4.95	14.16					4 satellites, post-processed
Co-add 4 satellites				1.00				Superposition of data using X-ray centroids
On-Orbit Telescope - single satellite				14.12				RSS
Calorimeter pixelization error					4.08			5 arcsec pixels
Telescope level effects					5.20			RSS
– Image reconstruction errors (over obs)						4.24		RSS
SXT/Telescope mounting strain						2.00		Eng. estimate based on Chandra experience
SXT/SI vibration effects						2.00		Chandra experience (jitter)
- SXT/SI misalignment (off-axis error)						1.00		Chandra experience
– SXT/SI focus error						0.20		Analysis
SXT Optics - on-orbit performance					12.48			RSS
– SXT Mirror launch shifts						2.00		Eng. est. based on Chandra
– Thermal errors						2.24		RSS
– Material stability effects						1.00		Est. based on Chandra work
– SXT Mirror, as built						12.07		RSS
≻Gravity release							1.50	FEA analysis using vertical assy
≻Bonding strain							3.00	Eng. estimate, analysis in process
≻Alignment errors (using CDA)							3.38	RSS
≻Installation in housing							5.00	Est. based on OAP1 testing
≻ Optical elements							9.90	Est. based on tech dev program

May 7/8, 2003

Allocation

RSS Prediction

SXT FMA Requirements

SXT FMA Perform	ance Requirements	Trace to Top-Level Mission Requirements					
Bandpass	0.25 to 10 keV	Allocation of mission bandpass to SXT					
Effective area (per mirror) @0.25 keV @1.25 keV @6 keV	8,826 cm ² 8,421 cm ² 1,722 cm ²	Provides 33,000 cm ² at 1 keV and 6,900 cm2 at 6 keV for the mission. Allows effective area losses due to detector efficiency, etc., to achieve TLRD baseline requirement per error budget summarized in Table 1-2.					
Angular resolution	12.5 arcsec HPD	Error budget allocation to mirror that allows telescope system to achieve requirement of 15 arcsec with 4 arcsec margin combined by RSS (Table 1-3).					
Field of view	2.5 arcmin	Exceeds instrument FOV; defined by detector FOV					
Derived Requirements: SXT Mirror		Derivation					
Diameter	1.6 m	To meet mission area requirements with 4 mirrors					
Focal length	10 m.	Consistent with grazing angle requirements for 1.6 m diameter mirror.					
Axial length	<70 cm	To fit within envelope and meet fabrication considerations					
Operating temperature	20±1° C nominal	Range is per allocation from SXT angular resolution error budget (Table 1-3); minimizes angular distortions imposed by temperature change to components. Operating temperature is determined by optics assembly temperature					
Mass	642 kg	Current engineering estimate					
Derived Requirements: SX	T Grating: See Table 1-3						
Derived Requirements: The	ermal Pre/Post collimators						
Temperature gradient	1 ° C across diameter 1 ° C axial	Allocation from SXT angular resolution error budget (Table 1-3); minimizes angular distortions imposed by temperature gradients					
Mass	47 kg	Current engineering estimate					

RGS System Level Requirements

RGS Performance R	equirements	Trace to Mission Top-Level Requirements			
0.25-2.0 keV (6 to 50 A)		In combination with XMS, meets spectral resolution rqmts over the 0.25 – 10 keV bandpass. 1 to 2 keV used for calibration with XMS			
Spectral resolving power,R (?/??)	≥300 below 1 keV	Meets TLRD baseline requirement for R			
Effective Area @0.25 keV @0.6 keV @1.25 keV	250 cm ² 625 cm ² 175 cm ²	Flowdown from mission baseline effective area requirement			

RGA Requirements

Derived RGS Grating	Array Requirements	Derivation
Grating efficiency: @0.25 keV (1st Order) @0.6 keV (1st Order) @1.25 keV (2nd Order)	>0.14 >0.22 >0.06	Flowdown from area requirements. Theoretical efficiency with 50% margin. Met with 40% margin when measured efficiencies for anisotropically etched grating test ruling are used
Interception factor	0.57	Fraction of X-rays entering RGA intercepted by gratings and dispersed in the various orders. Flowdown from area requirements
Straight-through factor	0.38	See Inteception factor (above)
Grating goove parameters a: incidence angle ?: graze angle d: groove spacing	a = 1.61 deg. ? = 2.21 deg. 1/d = 407 mm ⁻¹	Given 15" HPD telescope, and requiring = ?/?? 400 at blaze (blaze = 0.605 deg. reflectivity is optimized there using scalar diffraction theory.
Grating flatness	<2 arcsec FWHM	Grating error budget flowdown for spectral resolution. Combined with alignment error, allows broadening of the line spread function core by no more than 30% and SXT mirror dominates
Grating to grating alignment	≤2 arcsec FWHM	See grating flatness item (above)
Mass	50 kg	Current engineering estimate

RFC Requirements

Derived RGS Focal Plane C	amera Requirements	Derivation
Quantum Efficiency @0.25 keV @0.6 keV @1.25 keV	>0.86 >0.93 >0.98	Flowdown from area requirements
Energy Resolution at 250 eV	> 90% events within 100 eV band	Required to separate spectra from overlapping orders. The requirement is met with 20% margin by state-of-the-art (ACIS-S) BI CCD's
Optical Blocking Filter -Visible light rejection	>10 ⁶	Optical light rejection to avoid CCD pulse height confusion
X-ray transmission @0.25 keV @1.25 keV	>0.8 >0.98	Flowdown from area requirements in conjunction with grating efficiency meets the top- level area requirements
Optical starlight rejection	≤1 electron/pixel/readou t for 10 magnitude star	Joint requirement on pre-collimator, SXT straylight performance, and SRC CCD optical blocking filter performance
Pixel size	24 microns	Required to critically sample the Point Respose Function
SRC number of pixels, dispersion direction	1.3 X 104	Required to cover the dispersed instrument bandpass (0.25 to 2 keV), given above pixel size and SXT focal length. (1024 pixels x 13 CCDs)
SRC number of pixels, cross-dispersion direction	512	Required to provide adequate areas to enable background subtraction
ZOC CCD format	1024 X 1024	Identical to SRC chips to minimize costs
Frame readout rate	2 second integration time per frame	< 50% pileup in central CCD pixel for bright source limit, assuming 20% flux in single emission line
Operating temperature	-60° C to -80° C	Reduces hot and flickering pixels
Mass	33 kg	Current engineering estimate

Technology Development

- Updated Technology Roadmaps to achieve TRL 6
- Defined Technology Gates:
 - Subsets of TRL demonstrations defined in the TRIP report and
 - Represent significant improvements in performance or scale
- Summarized Technology Development milestones, including goals of each technology demonstration stage for each technology

Technology Development Roadmap Summary

System	Technology	Heritage	Required Improvement	Req't	Sub	system Te Level k	chnology by Fiscal		ess
			improvement		1998	Current	2004	2005	2006
FMA	SXT Mirror	Astro- E/E2, BBXRT, ASCA	Angular resolution	12.5 arcsec	TRL 2	TRL 3-4	TRL 4	TRL5	TRL 6
		XMM- Newton	Larger diameter	1.6 m					
		XMM-	Low mass	0.2g/cm ²					
RGS	Gratings (RGA)	Newton, Chandra	Mass production	25/day	TRL 3	TRL 3	TRL 5		TRL 6
NGS	CCD Detector (RFC)	Chandra, ASCA	Production yield	20%	TRL 2	TRL3	TRL 4	TRL 6	
	(141 0)	AOOA	Event drive						
	Microcalorimeter	Astro- E/E2	Larger array	32 x 32 pixels	TRL 3	TRL 4	TRL 5	TRL 6	
	Microcalonineter		Energy resolution	4 eV	TIVE 3	1112 4	TREO		
XMS		Astro-	Warmer sink	6 K					
XIVIO	ADR	E/E2 HAWC, XQC	Cont. operations		TRL 3	TRL 4		TRL 5	TRL 6
	Cryocooler	HST, TES, AIRS	Lower temperature	6 K	TRL 3	TRL 4		TRL 5	TRL 6
HXT	HXT Mirrors	HEFT, InFOCµS	Angular resolution	60 arcsec	TRL 3	TRL 4	TRL 5	TRL 6	
11/(1	HXT Detectors	HEFT, Swift	Low energy response	6 keV	TRL 3	TRL 4-6	TRL 5	TRL 6	

Technology Gates

System	Technology	Performance	State-of-the-Art	Current	1	echnology Gate	es	Nominal Flight
System	recillology	Parameter	State-of-the-Art	Current	2004	2005	2006	Requirement
SXT FMA	Mirrors	Angular Resolution (HPD)	80 arcsec	<15 arcsec (reflector only)	12.5 arcsec	12.5 arcsec		12.5 arcsec
		Diameter	40 cm	20 cm	50 cm	160 cm		160 cm
	Gratings (RGA)	Mass/unit area	0.6g/cm ²	_	0.2g/cm ²		0.2g/cm ²	0.2g/cm ²
RGS		Groove density/variation	645 lines/mm / 7%	500 lines/mm / 0%	N/A		407 lines/mm/5%	407 lines/mm/5%
	CCD	Quantum Efficiency	15%	25%		>80%		86%
	Microcalorimeter	Array Size	32 pixels	25 pixel array 4 pixel readout	64 pixel array 16 pixel readout	1032 pixel array 96 pixel readout		1032 pixel array 1024 pixel readout
		Energy Resolution	4.8 eV at 6 keV	10 eV at 6 keV		4 eVat 6 keV		4 eV at 6 keV
XMS	ADR	Cold/Hot end	50mK/1.1K	50mK/4K		50mK/6K		50mK/6K
		Operating mode	Periodic	Continuous		Continuous		Continuous
	Cryocooler	Cooling power	1.5 mW at 55K	0 mW at 5.4K		20 mW at 6K		20 mW at 6K
	Mirrors	Obscuration throughput	40%	60%		75%		75%
нхт	Detectors	Low Energy Threshold	~17 keV	~17 keV		6 keV		6 keV

SXT FMA Technology Development Roadmap Summary

	Optical Pathfind	ler Assembly	Engineering	Mass	Destations			
	OAP #1	OAP #2	Unit	Alignment Pathfinder	Pro	Prototype		
Configuration	PH	P	E E	PH				
Module Type	Inner	Inner	Inner	Inner	Outer	Wedge (2 Outer & 1 Inner)		
Housing Material	Aluminum	Titanium	Composite	Composite	Composite	Composite		
Focal Length	8.4 m	8.4 m	8.4 m	8.4 m	10.0 m	10.0 m		
Reflector Length (P&H)	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 20-30 cm	2 x 20-30 cm		
Nominal Reflector Diameter(s)	50 cm	50 cm	50 cm±	50 cm±	160 cm 120 cm± 100 cm	160 cm±40 cm± 120 cm± 100 cm±		
Goals	 Align 1 reflector pair (P&H) Evaluate mirror assembly design, alignment and metrology 	 Align 1 reflector pair Evaluate reflector Evaluate mirror bonding 	 Align up to 3 reflector pairs to achieve <12.5 arcsec Eval. assembly gravity sag X-ray and environmental test Evaluate composite housing 	 Align 3 reflector pairs Evaluate tooling and alignment techniques for mass production X-ray test 	 Flight-like configuration outer module Environmental and X-ray test Largest reflectors 	 Demonstrate largest and smallest diameter reflectors Demonstrate module to module alignment Environmental and X-ray test 		
TRL	TRL 3		TRL 4		TRL 5	TRL 6		
Timeframe	Q2 of FY03	Q3 of FY03	Q1 of FY04	Q1 of FY05	Q4 of FY05	Q4 of FY06		
Technology Gate			•		•			

RGA Technology Development Roadmap Summary

Parameters	State-of-the-Art XMM-Newton	Grating Fab Demo	Large Area Grating	Demo Assembly	Grating Chirp	Grating Module Engineer Unit	Grating Module Flight Unit
Substrate Flatness	<2 arc sec	~30 arc sec	<2 arc sec	<2 arc sec	<2 arc sec	<2 arc sec	<2 arc sec
Grating Size	200 x 100 mm	20 x 20 mm	140 x 100 mm (70% flight size)	200 x 100 mm (nom. flight size)	(200 x 100 mm)	(200 x 100 mm)	(200 x 100 mm)
Grating Mass/Unit Area	0.6g/cm ²	_	_	0.2g/cm ²		0.2g/cm ²	0.2g/cm ²
Groove Form	0.7 deg blaze	0.7 deg blaze	0.6 deg blaze	NA	0.6 deg blaze	0.6 deg blaze	0.6 deg blaze
Ruling Density/Variation	646 I/mm / 7%	500 I/mm / NA	407 l/mm / 0%	NA	407 l/mm / 5%	407 I/mm / 5%	407 I/mm / 5%
Groove Fabrication Process	Epoxy multi-gen replication of mechanically ruled master grating	Interference lithography & anisotropic etch Si (111) plane facet	Scanning Beam Interference Lithography (SBIL) Si (111) plane facet	NA	Variable Period (VP) SBIL pattern & anisotropic etch Si (111) plane facet	VPSBIL pattern & anisotropic etch Si (111) plane facet	VPSBIL pattern & anisotropic etch Si (111) plane facet
Ass'y Level & Properties	Gratiing Array	Single grating	Single grating	Module	Single grating	Module	Module
Gratings per Module	182 per array			3 or more gratings		~10 gratings	~10 gratings
Grating-to-Grating Align't	2 arc sec			2 arcsec		2 arcsec	2 arcsec
	NA	X-ray test atomically smooth groove facet	X-ray efficiency test large area grating for groove quality and uniformity	Grating substrates fab'd w mass production processes applicable to flight gratings		End-to-end X-ray test of grating module with SXT mirror segment	
Other Goals				Flight representative module structure		Flight like gratings and modules	
				Verify alignment before/after environmental test		Verify alignment before/after environmental test	
TRL	TRL 9	TRL 3	TRL 4	TRL 5		TRL 6	
Timeframe		Current	Q2 FY04	Q4 FY04	Q3 FY05	Q2 FY06	
Technology Gate				•		•	

RGS Focalplane Camera (RFC) Technology Roadmap

Parameter	State-of-the-Art Chandra ACIS	Current	ED-CCD Gen1 Lot1	ED-CCD Gen2 Lot1	ED-CCD Gen2 Lot2	ED-CCD Gen2 Lot3	Engineering Unit Focal Plane	Flight Requirements
QE at 0.25 keV								
Bare CCD	0.73	0.8	N/A (FI)	0.8	0.9	0.95	0.95	0.95
- CCD+OBF	0.15	0.25	N/A (FI)	0.3	0.8	0.86	0.86	0.86
Device Yield								
• FI	0.1	0.8	0.8 est	0.8	0.8	0.8		
• BI	0.02	0.25	N/A (FI)	0.25	0.25	0.25		
Net = FI*BI	0.002	0.2		0.2	0.2	0.2		0.2
CCD Frame Rate (Hz)	0.5	2	10	50	50	50	50	50
EDCCD Config		_	FI	FI, BI	FI, BI	ВІ	BI	ВІ
Energy Resolution (eV)								
@1.5 keV	130 (S3-BI)	69 (FI)	70(FI) pred	125 (BI)	100 (BI)	100 (BI)	100	100
@0.25 keV	110 (S3-BI)	91 (LTM-BI)	N/A (FI)	125 (BI)	100 (BI)	100 (BI)	100	100
Event Reconstruction	3x3, 5x5	3x3, 5x5	3x3	3x3,5x5	3x3,5x5	3x3,5x5	3x3,5x5	3x3,5x5
Array Format	1024²		512 ²	1024²	1024 ²	1024 ²	1024²	1024²
Focal Plane Complexity	10 chips	48 chips	1 chip	1 chip	1 chip	1 chip	4 chips	13 chips
Radiation Tests			Y	Y		Y	Y	
Environmental Tests							Y	
Milestone Dates	2Q FY97	3Q FY03	3Q FY03	2Q FY03	1Q Fy05	3Q FY05	4Q FY05	
TRL		TRL3		TRL4			TRL 6	
Technology Gate		_				*		

Management, Cost and Schedule

- Organization Structure
- Acquisition Strategies
- Schedules
 - Detailed
 - Critical Paths
- Cost Estimates
 - Grass roots, Industry ROMs, PRICE-H
 - Contingency

Constellation-X Project Organization (Formulation)

Acquisition Strategy Summary

System	Solicitation	Contract Award
Instruments (RGS, XMS, HXT)	Announcement of Opportunity	Phase B start
SXT FMA	RFP	Mid-Phase A
Observatory	RFP	Phase B start
Science and Operations Center (CXSOC)	Sole Source to SAO	Phase B start
Ground Stations	RFP for commercial lease	L – 18 months
Launch Vehicle	KSC procurement	L – 30 months

TRIP Constellation-X Mission Summary Schedule

SXT Flight Mirror Assembly (FMA) Development Schedule

TRIP Review Panel Report Summary—April 22, 2003

- GSFC and SAO are a Strong Team, Experienced in X-Ray Astronomy Missions
- The Mission has Strong Support from GSFC Management
- The Project Benefits from a Rich Heritage While at the same Time Pushing the Envelope in Several Key Technology Areas
- The Schedule and Budget Reserves are Low, Espectialy Early Year Funding
- The Review Panel Feels that with Added Budget and Schedule Reserves, Con-X has a High Likelihood of Reaching the Launch Pad Successfully and on Time

TRIP Highlights Summary and Conclusions

- Generation of TRIP report valuable
 - Overall mission planning taken to next level of detail
 - Report itself is handy reference
- Independent TRIP Review assessment validates mission concept and plans; identifies areas to further reduce risk
- Most of work for TRIP is applicable to stretched out schedule
- Project is positioned to enter into Phase A